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APPLICATION OF A NOVEL OPTIMAL CONTROL
ALGORITHM TO LOW-THRUST TRAJECTORY
OPTIMIZATION

Gregory J. Whiffen! and Jon A. Sims?

An application of the new optimization algorithm called Static/Dynamic
Control {(SDC) to the design of low-thrust interplanetary trajectories is pre-
sented. SDC is a general, gradient based optimization method that is dis-
tinct from both parameter optimization and the calculus of variations. In-
terplanetary trajectories are integrated with a multi-body force model and
may include gravity assists. Engine operation is modeled as finite burns. A
feature of the SDC approach is its ability to locate favorable intermediate
flybys. It is not necessary to specify which intermediate flyby bodies will be
used for gravity assists. This is in contrast to many existing optimization
methods. SDC does not require a good initial trajectory guess to begin the
optimization. SDC’s ability to begin with poor guesses and locate favorable
intermediate flybys results in the identification of non-obvious, yet highly
efficient trajectories. Results produced by SDC are compared to results
produced by a program based on the calculus of variations and a program
based on parameter optimization. The test problems feature solar electric
propulsion with a specific impulse that is a function of the engine throttle
level. The objective is to maximize final mass taking into account a launch
vehicle performance curve and propellant usage.

INTRODUCTION

Low-thrust electric propulsion is increasingly being selected as the propulsion system of choice for
future interplanetary missions. The higher efficiency of electric propulsion compared to traditional
chemical propulsion results in larger payload delivered or shorter flight times. The successful Deep
Space 1 mission demonstrated the reliability of electric propulsion.

Low thrust engines typically operate for days, months or even years. This is in contrast to
chemical systems that operate for minutes. The continuous operation associated with low thrust
significantly increases the optimization complexity and renders approximations used for chemical
propulsion trajectories inaccurate. For example, the instantaneous impulse engine model is inaccu-
rate or requires a fine discretization to represent low-thrust arcs. While a discretized patch-conic
method is adequate for low fidelity preliminary design, it cannot be used for high fidelity simulation
or design optimization. What is needed is a robust high fidelity optimization method for low-thrust
trajectories. Optimizing a high fidelity low-thrust formulation was a main objective of this research.
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Existing methods for optimizing low-thrust trajectories are classified as either direct or indirect,.
Direct approaches parameterize the trajectory and solve the parameterized problem using a gradient
based nonlinear programming method, or a hueristic method such as simulated annealing. Direct
methods typically remove the explicit time dependence in the optimal formulation by parametrizing
the trajectory as a series of impulse burns and conic coasts. Indirect approaches are based on the
calculus of variations, resulting in a two point boundary value problem!. Indirect methods do no
remove the explicit time dependence of the trajectory problem, rather it is solved as an optimal
control problem. Calculus of variations methods are limited to a single body (Sun) force model
due to the sensitivity of the method. Intermediate planetary flybys are modeled by instantaneous
rotations of the velocity vector.

The optimization method used in this research is called Static/Dynamic Control or SDC. SDC
is a new, general optimization algorithm which was derived to address a general class of problems
with the same structure as low-thrust optimization. SDC best fits into the direct method category.
However, unlike other direct methods, the explicit time dependence of the optimization problem is
not removed by parameterization. The SDC optimization algorithm is a form of optimal control.
Unlike many other optimization approaches, SDC can be used with the highest fidelity space flight
simulators available.

In addition to SDC’s capability as a high fidelity design tool, SDC optimization provides several
important features which are useful for preliminary trajectory design. A novel feature of the SDC
approach is its ability to locate favorable intermediate flybys. It is not necessary to specify which
intermediate flyby bodies will be used for gravity assists. This is in contrast to many existing
optimization methods. Another useful feature is that SDC does not require a good initial trajectory
guess to begin the optimization. SDC’s dual ability to begin with poor guesses and locate favorable
intermediate flybys results in the identification of non-obvious, highly efficient trajectories.

APPROACH
The General SDC Problem Structure

SDC is a general optimization method designed to solve a class of mathematical problems. The
SDC optimization algorithm is based in part on the Hamilton, Bellman, Jacobi dynamic program-
ming equation?. Unlike traditional differential dynamic programming methods, SDC is constructed
to solve highly nonlinear and non-convex problems with a dual dynamic and parametric structure.
Optimal solutions generated by SDC satisfy both the necessary and sufficient conditions of optimal-

1ty.

Three distinct classes of variables are recognized by SDC. The first is the dynamic control which
are functions of time. Dynamic control variables are analogous to control variables in optimal control
theory. The vector v(t) is used to represent the dynamic control at time ¢. The second variable class
is the static control which can be thought of as parameters in the ordinary parameter optimization
sense. The vector w is used to represent the static control. Both the static and dynamic control
variables encompass design variables that are under direct control by the engineer. In addition to
the static and dynamic controls, SDC recognizes time dependent state variables. The state vector
encompasses variables not under the direct control of the engineer. The vector z(t) is used to
represent the state at time .

The general objective or cost function of SDC can be written as the addition of a time-integrated
cost and a sum of point-in-time costs:

tN N
J=/c F(z(t), v(t), w, t)dt + Y G(z(ts), v(ts), w, b, 4). (1)
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The goal of SDC is to optimize ./ by choosing the optimal or “best” dynamic control vector v(t)
at all time instants ¢ € (¢g, ¢y) simultaneously with the optimal static parameter vector w. The
objective J can be either minimized or maximized in value. The general functions F' and G in Eq.
(1) are selected to best represent the design and control objectives for a specific application. The
times ¢; are assumed to lie between tg and ¢y for i = 1,2,..., N — 1. The functions F and G are
required to be twice continuously differentiable with respect to z, v, and w. The functions F' and G
do not need to be continuous in time ¢.

In addition to the objective Eq. (1), SDC requires an ordinary differential equation which
describes the time evolution of the state vector z, and a function that specifies the initial state
-’L’(t = to)l

dz(t)

Tdt
The state function T is required to be twice continuously differentiable with respect to z, v, and
w. However, the state function T does not need to be continuous in time ¢. The vector function T
is selected to best represent the time evolution of the state vector z(t) under the influence of the
current state, the current dynamic control vector v(t), and the static parameter vector w at time
instant ¢. The initial condition can be given and fixed, or it can be a function of the static control
vector w. The function T is required to be once continuously differentiable with respect to w.

=T(z(t),v(t), w,t) z(t =to) = T(w), (2)

SDC optionally allows two types of constraints on the formulation Eqs. (1) and (2). The first
type are ordinary constraints of the general form:

L(z(t),v(t),w,t) > 0 andfor K(z(t),v(t),w,t) =0, (3)

The linear or nonlinear vector functions L and K are selected to represent practical or physical
constraints on the engineering problem. An example of a constraint of this type is a minimum
allowed distance between the Sun and a spacecraft to avoid spacecraft overheating.

The second type of constraint SDC allows are “control dynamic” constraints. Control dynamic
constraints represent any physical or practical engineering constraints on the time evolution of the
dynamic control vector »(t). The control dynamic constraints have the general form:

flu,w,t,1) for t =ty to 1
flua, w,t,2) for t =1t to to
v(t) = : : (4)

flun,w,t, N} for t=tn_1 to tn.

The vector functions f(u;, w,t, i} are selected to properly represent the limitations on the time evolu-
tion of v(t). The number of periods NV may be chosen arbitrarily. The functions f are parameterized
by a parameter vector u;, the static parameter vector w, and time ¢. The functions f can be used
to effectively limit or constrain the SDC algorithm to consider only solutions v(t) which are of the
form of Eq. (4). The time intervals ¢; to t;4; are called “periods.” The dynamic parameter vector
u; is constant within each period ¢, i = 1,2, ..., N. For example, the simplest useful set of functions
fis f(ui,w,t,i) = u;. The dynamic control vector v(t) may be optimized such that v(t) is con-
stant over each period, allowing changes only at period interfaces ¢;. Alternatively, v(t) may be
subject to a dynamic limitation that allows v(t) to vary within each period, either continuously or
discontinuously.

If SDC is used with control dynamic constraints, then the algorithm is called the period formu-
lation of the SDC. If no control dynamic constraint is used then the algorithm is called the fully
continuous formulation of SDC. In this research, the period formulation of SDC was used to con-
strain the trajectory optimization to only allow changes in the thrust direction and magnitude at



regular time intervals. The regular time intervals represent the practical limitations of spacecraft
control resulting from communications and/or duty cycles.

Application of SDC to Trajectory Optimization
The first step in applying SDC to the problem of low-thrust trajectory optimization requires

defining the state and control variables. The state vector z(¢) is defined to be the spacecraft state
at any given time ¢. The components of the state vector z(t) are defined as follows,

[z (t) [ z coordinate of spacecraft ]
z2(t) y coordinate of spacecra ft
z3(t) z coordinate of spacecraft
z(t) = | z4(t) | = | z velocity of spacecraft (5)
z5(t) y velocity of spacecraft
ze(t) z velocity of spacecrafi
| z7(t) | | mass of the spacecraft.

The dynamic control v(t) is defined to be the electric propulsion thrust vector as a function of
time. The components of the dynamic control vector v(t) are defined as follows,

v1(t) z component of thrust
v(t) = | ve(t) | = | ycomponent of thrust (6)
va(t) z component of thrust.

The components of the static control vector w are defined to be

[ wy ] [ Date of Earth launch

wa total flight time
wa z component of launch Vy
N y component of launch Vi
w= ws = | zcomponent of launch V. (7)

we Date of first intermediate flyby

| Wsin Date of nt* intermediate flyby.

p -

The SDC algorithm is not limited to the definition Eqs. (5), (6), and (7). These definitions were
used to perform comparisons between SDC and existing programs. Additional control and state
dimensions can be added. For example, the static control w could be augmented with design
parameters like solar array size. The state vector z could be augmented with a state representing
the total spacecraft radiation dose.

The second step in applying SDC is to provide an initial condition function z(¢o) = I'(w). The
following definition is used to provide a launch from Earth as the initial condition. The initial
mass of the spacecraft is obtained from a launch vehicle performance curve depending on the launch
Voo = (w3, wy, ws).

tnitial position Xe{wy)
[(w) = initial velocity = Ve(w1) + wa:s (8)
initial mass mlv, (ws.s)

The vector functions X (w;) and V,(w;) are the Earth’s center location and velocity at the launch
date w;. The function milv.(ws.5) is the launch mass for the launch energy Cs = ||w3.5]|?. The JPL



Lunar and Planetary Ephemerides are used to define X,(w;) and V.(w;). Note that the trajectory
begins at the center of a massless Earth. This simplification was necessary to make comparisons
with existing low thrust optimization programs which make the same launch approximation. More
realistic launch conditions involving multi-body propagation have been successfully incorporated

using SDC.

The state equation used to describe the time evolution of the state is

24(t) z velocity of spacecraft
z5(t) y velocity of spacecraft
s nie) l‘s(ltl) (L z velocity of spacecraft
- = T(z,v,w,t) = Z_ﬁ + 2=t > | = |  acceleration of spacecraft |, 9)
% + Z;l; ﬁ y acceleration of spacecraft
:'37(2) + Zzlil u!,:: I:i z acceleratzojr:lof sp:cecraft
i e ] mass flow rate

The mass flow rate m is provided by a polynomial fit to the performance of the NSTAR 30-cm ion
thruster®, a version of which is in operation on Deep Space 1. The specific impulse is not constant,
but depends on the engine throttle level.

Constraints of the form of Eq. (3) are used to constrain the thrust and reach intermediate and
final target bodies. The maximum thrust is constrained by the performance of the thruster(s) and
the power available from the solar array at a given heliocentric radius. Target constraints include
flyby or rendezvous state constraints.

The objective used for all comparisons was to maximize the final spacecraft mass or net mass, i.e.
mazimize z7(tn). This objective takes into account the launch vehicle performance and propellant
usage.

RESULTS

Results produced by SDC for several test problems are compared to results produced by two
other optimization programs. One program is based on the calculus of variations, the other is based
on parameter optimization. The two programs used for comparison are SEPTOP! and CLSEP?,
both developed by the Jet Propulsion Laboratory. The program SEPTOP is a low-thrust opti-
mization program based on the calculus of variations. SEPTOP is the successor program to the
well known program VARITOP®. Both SEPTOP and VARITOP have been used extensively by
the Jet Propulsion Laboratory to design a variety of low-thrust missions. The program CLSEP is a
low-thrust optimization program based on nonlinear parameter optimization. CLSEP parameterizes
the problem by dividing the trajectory into a series of legs. CLSEP uses the nonlinear program-
ming software SNOPT® to solve the resulting problem. Both SEPTOP and CLSEP propagate the
trajectory assuming the only gravitating body is the Sun. An intermediate flyby is modeled as an
instantaneous rotation of the V. vector at the planet’s center. This is in contrast to SDC which is
based on multi-body propagation. In order to optimize the trajectory, SDC requires that the Sun
and at least the intermediate flyby planet(s) be gravitating. SDC was applied with a non-gravitating
Earth launch and final target body in order to make the comparisons with SEPTOP and CLSEP as
close as possible.

SEPTOP and CLSEP require intermediate flyby sequences to be specified before the optimization
begins. Both parameter optimization and calculus of variations methods require the intermediate
flyby sequence to be given and fixed. The SDC method does not require the intermediate flyby
sequence to be given and fixed. Since SDC does not require the flyby sequence to be fixed, SDC
can locate favorable intermediate flyby sequences on its own. The particular intermediate flyby



sequence that SDC will converge to will depend on the initial trajectory supplied to SDC to begin
the iterations. SDC does not require a good, or even feasible, trajectory to begin with. Examples of
starting trajectories are given with some of the test cases that follow. A constraint was added to the
SDC formulation to fix the intermediate flyby sequence for comparison to SEPTOP and CLSEP.

The test problems include an Earth launch to Mars flyby; Earth launch to Mars flyby, to a flyby
of the asteroid Vesta; Earth launch to Venus flyby to Mercury rendezvous; and Earth launch to
Venus flyby to Mars flyby to Jupiter flyby.

Earth to Mars Flyby

The Earth to Mars flyby is the simplest and most direct comparison possible because SDC can
be used with only the Sun gravitating, similar to both SEPTOP and CLSEP. The flyby of Mars
test problem fixed the launch date to be May 20, 2003, the arrival date to be December 6, 2003, the
launch mass to be 585.0 kg, and the launch V,, magnitude to be 1.66 km/s. The direction of the
Vo vector is free. For SDC, the flight time was divided into 200 periods (1 day per period) during
which the thrust magnitude and direction was constrained to be constant. The solar array power at
1 AU is 6.0 kw. The spacecraft carries a single thruster with a maximum thrust of 92.3 mN when
supplied 2.6 kw. The optimization variables include the launch V,, direction and the solar electric
thrust sequence. Since the launch mass is fixed in this problem, maximizing the final mass at Mars
is the same as minimizing the propellant mass. The results for SDC, CLSEP, and SEPTOP are
provided in Table 1.

Table 1
EARTH - MARS FLYBY

Program SDC CLSEP SEPTOP
Propellant (kg) 30.61  30.67 30.65

The propellant mass results for all three programs agree closely. The larger difference between SDC
and SEPTOP verses CLSEP and SEPTOP is likely a result of slightly different final locations for
the Sun used by the three programs. Unlike SDC, SEPTOP does not use the JPL Ephemerides at
all times to locate the planets and the Sun. SEPTOP uses a single epoch at which the state returned
from the Ephemerides is used to define fixed classical orbital elements for the planets. Unlike SDC,
both CLSEP and SEPTOP do not account for the motion of the Sun relative to the solar system
barycenter.

The initial guess supplied to SDC was launch V,,=(1.66,0,0) km/s, and zero thrust at all times.
This initial guess misses Mars by 75 million kilometers. Despite the poor starting trajectory, SDC
locates Mars and converges rapidly. SDC runtime for this problem is on the order of 30 seconds
using a Sun Ultra 10 workstation.

Earth to Mars Flyby to Vesta flyby

The Earth to Mars flyby to Vesta flyby involves a single thruster and a solar array which produces
10 kw at 1 AU. The base case launch date is October 4, 2009, the Mars flyby date is May 2, 2010,
and the Vesta flyby date is January 27, 2011. The base case launch mass is fixed at 545.0 kg, and
the launch V., magnitude is fixed at 2.80 -k—:-’i Other comparisons involve optimizing the flight time,
the launch date, the Mars flyby date, the magnitude of V,,,, and the initial mass.

SDC must use multi-body propagation for the Earth to Mars Flyby to Vesta flyby problem.
SDC requires Mars to be gravitating to correctly represent the intermediate flyby. SEPTOP and



CLSEP propagate the trajectory under the influence of only the Sun to the center of Mars and then
instantaneously rotate the Vo, vector. This is a fairly significant difference computationally and is
expected to result in somewhat different results. Table 2 provides the results of the comparison.
Figure 1 provides a plot of the optimal trajectory obtained by SDC.

Table 2
EARTH - MARS - VESTA FLYBY*

Launch Earth Mars Quantity
Voo Launch Flyby to be SEPTOP CLSEP SDC
Magnitude  Date Date Compared

fixed fixed fixed Final mass (kg) 493.74 493.73  494.05
Mars radius (km) 6260 6215 6212

Final mass (kg) 503.38 503.46  503.31

free fixed fixed Mars radius (km) 6756 6691 6643
Launch C3 (¥2%)  6.768 6.764  6.811
Final mass (kg) __ 503.46 503.36

fixed fixed free ~ Mars radius (km) 5496 NA 5497
Date at Mars 312.92 313.17
Final mass (kg) 503.39 503.46  503.32

free free fixed Mars radius (km) 6685 6682 6645
Launch C; (&2%)  6.778 6.769  6.811

Launch date 108.79 108.68  108.31
Final mass (kg) 504.36 504.43 504.14

Mars radius (km) 6082 6039 6071

free free free Launch Cs (k:'f) 7.283 7.317 7.300
Launch date 109.97 110.07  110.15
Date at Mars 315.35 315.05 31545

* The “Mars radius” is the distance of closest approach to Mars measured to the center of Mars. The “Date
at Mars” is the time of closest approach. All dates are the last three digits plus two decimals of the Julian
date: 2,455, xxx.xx. “NA” indicates results that are not available.

Table 2 demonstrates very good agreement between all three methods - despite the fact SDC
integrates through the Mars flyby and CLSEP and SEPTOP do not. The approximation used by
CLSEP and SEPTOP to model flybys will be worse for larger planets.

The initial guess supplied to SDC was launch Vo, =(0,2.8,0) km/s, and zero thrust at all times.
The initial trajectory is never closer than 23 million kilometers to Mars and misses Vesta by 375
million kilometers. Despite this poor guess, SDC locates the Mars flyby and Vesta and converges
rapidly. The runtime for this problem is on the order of 3 minutes using a Sun Ultra 10 workstation.

Earth to Venus Flyby to Mercury Rendezvous

The Earth to Venus flyby to Mercury rendezvous involves a single thruster and a solar array
which produces 1.5 kw at 1 AU. The spacecraft bus consumes a constant 200 watts leaving only
1.3 kw available for the thruster at 1 AU. With this arrangement, the thruster can operate at its
maximum rated thrust only below heliocentric radius 0.6455 AU. At radii greater than 0.6455 AU,
the engine must be throttled. The base case launch date is August 29, 2002, the Venus flyby date is
February 11, 2003 and the Mercury arrival date is December 24, 2004. Other comparisons involve
freeing the launch, Venus flyby, and arrival dates. The launch vehicle used is a Delta 7326 with a
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Figure 1: SDC Optimal trajectory for the Earth launch - Mars flyby - Vesta flyby problem. The
arrows along the spacecraft trajectory indicate the thrust direction. The lack of arrows along the

trajectory indicate coasting periods.



10% launch vehicle contingency. The launch V,, magnitude and direction are free. The objective is
to maximize final mass. This problem is known to be very difficult.

The results for the Earth launch to Venus flyby to Mercury rendezvous problem are provided in
Table 3. The optimal trajectory for this test problem as determined by SDC is plotted in Figure 2.

Table 3 indicates that all three programs produce similar optimal values. The SDC solution is
closer to the SEPTOP solution than to the CLSEP solution in terms of both final mass and the
trade off between propellant usage and launch energy Cs;. The three programs are not expected
to produce identical results due to differences in the way each method represents engine operation,
flybys, and planet locations.

Table 3
EARTH - VENUS - MERCURY RENDEZVOUS*

Earth Venus Mercury Quantity
Launch Flyby  Arrival to be SEPTOP CLSEP SDC
Date Date Date Compared
Final mass (kg) 316.01  312.76  315.34
fixed fixed fixed Venus radius (km) 6951 6352 6953
Launch Cs (¥22)  7.421 8.769  7.539
Final mass (kg) 316.90 317.74
Venus radius (km) 9703 7591
free free fixed Launch Cs ( kf,'z) 6.721 NA 7.288
Launch date 2,496.8 2,507.9
Date at Venus 2,672.8 2,677.4
Final mass (kg) 328.12 328.77
Venus radius (km) 9031 7857
free free free Launch Cy (A22) 6.099 NA 6.469
Launch date 2,502.4 2,507.4
Date at Venus 2,678.8 2,680.6
Mercury arrival 3,373.5 3,373.5

* The “Venus radius” is the distance of closest approach to Venus measured to the center of Venus. The
“Date at Venus” is the time of closest approach. All dates are the last four digits plus one decimal of the
Julian date: 2,45%,xxx.x. “NA” indicates results that were not available. The arrival date at Mercury was
free in the last row subject to the range constraint 2,453,353.5 < Arrival < 2,453,373.5 Julian Date.

The starting trajectory provided to the SDC optimization program was poor (refer to Figure 3).
The starting trajectory consisted of a simple inward spiral (thrust directed nearly opposite velocity).
The spiral results in a spacecraft location more than 20 million kilometers from Venus on the nominal
Venus flyby date. In addition, the spiral fails to match Mercury’s position at the arrival date by more
than 100 million kilometers (refer to Figure 3). Despite the poor initial trajectory, SDC converges
readily — demonstrating the robustness of the method. SDC runtime for this problem is on the
order of 40 minutes using a Sun Ultra 10 workstation. Convergence for SEPTOP was very difficult
for this problem, requiring several weeks of user intervention.

Earth to Venus to Mars to Jupiter Flyby

The Earth to Venus flyby to Mars flyby to Jupiter flyby involves two thrusters with a 90% duty
cycle and a solar array which produces 7.0 kw at 1 AU. The spacecraft bus consumes a constant 100
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Figure 2: Optimal trajectory for the Earth launch - Venus flyby - Mercury rendezvous problem.
The arrows along the spacecraft trajectory indicate the thrust direction.
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SDC Starting Trajectory
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Figure 3: The initial trajectory given to SDC for the Earth launch - Venus flyby - Mercury
rendezvous problem. The arrows along the spacecraft trajectory indicate the thrust direction. The
spiral results in a spacecraft location more than 20 million kilometers from Venus on the nominal
Venus flyby date. In addition, the spiral fails to match Mercury’s position at the arrival date by
more than 100 million kilometers. This demonstrates the ability of SDC to converge with a simple
starting guess.
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watts leaving only 6.9 kw available for the thrusters at 1 AU. The base case launch date is December
28, 2004, the Venus flyby date is September 14, 2006, the Mars flyby date is sometime at the end
of 2006 (free) and the Jupiter arrival date is February 14, 2009. The launch vehicle used is a Delta
7325 with a 7% launch vehicle contingency. The launch V,, magnitude and direction are free.

This test problem used the most intermediate flyby bodies in this comparison. The program
SEPTOP is programmed for at most two intermediate flybys due to the sensitivity created by
flybys. Table 4 provides the results for SDC and SEPTOP

Table 4
EARTH - VENUS - MARS - JUPITER FLYBY"™

Program Cs Final Mass Venus Flyby Mars Flyby Mars
(k) (kg) Radius (km) Radius (km) Date

SEPTOP 9.96 820.94 6604 3657 Dec. 4, 16:34

SDC 10.05 820.54 6506 3607 Dec. 4, 18:05

* The flyby radii are measured to the centers of Mars and Venus. The Mars flyby dates are in the year 2006.

Table 4 demonstrates excellent agreement between SDC and SEPTOP for a complex problem of
multiple intermediate flybys. Figure 4 provides a plot of the optimal trajectory obtained using SDC.

Earth to Mars Flyby Revisited

The focus of this paper has been to verify that SDC is an accurate optimization method. In
particular, it has been shown that SDC can reproduce the results of existing, accepted methods of
trajectory optimization. So far in this paper, the SDC method has only been used to replicate the
functionality of parameter optimization and the calculus of variations methods. However, SDC can
solve problems that the previous methods cannot. Future papers will present the unique abilities
of SDC. One simple example of SDC’s ability to locate favorable intermediate flybys is presented in
this subsection.

SDC does not require the prespecification of which intermediate bodies to use for gravitational
assists. Since SDC is based on a gradient method of optimization and multi-body propagation, SDC
can locate flybys based on the time changing derivatives of the gravitational field produced by all
bodies included in the gravitational terms in Eq. (9).

As an example, reconsider the Earth to Mars flyby problem. If SDC is used to solve this problem
with only the Earth and the Sun gravitating, then no intermediate flyby possibilities exist. The
launch condition used for a gravitating Earth is multi-body propagated escape hyperbola, beginning
at the hyperbola’s periapse. If the same problem is solved using SDC with the Sun, Earth, and
Moon gravitating, then SDC quickly finds a trajectory which includes a lunar gravity assist and
improves the performance. Table 5 provides a comparison of the result with or without the Moon
gravitating. No constraint was used to make SDC use the Moon as a gravity assist; SDC locates the
flyby and optimizes it automatically. Figure 5 provides a plot of the optimal Earth to Moon flyby
to Mars flyby trajectory. Figure 6 provides a plot of the same trajectory centered on the Earth to
show the lunar flyby.

12



Earth — Venus - Mars - Jupiter Flyby
Earth__l.__ﬁgnch

/ \"'-«
.,
o .,
.
, .,

0.5+

~05}

-1k

Y (A.U)

|
o
[, ]
T

]
w
n

T

—4F Jupiter Flyby

1 1 ] p— l

-1.5 -1 -0.5 0 0.5 1 1.5 2 25 3
X (A.U.)

Figure 4: Optimal trajectory for the Earth launch - Venus flyby - Mars flyby - Jupiter flyby
problem. The arrows along the spacecraft trajectory indicate the thrust direction. The lack of
arrows indicate coasting periods
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Figure 5: Optimal trajectory for the Earth launch - Moon flyby - Mars flyby problem. The
arrows along the spacecraft trajectory indicate the thrust direction. The lack of arrows indicate
coasting periods
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Figure 6: Optimal trajectory for the Earth launch - Moon flyby - Mars flyby problem centered
on the Earth.
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Table 5
EARTH - MARS FLYBY

Gravitating Terms  Final Mass Closest approach
at Mars (kg) to the Moon (km)
Sun, Earth 555.90 122,700
Sun, Earth, Moon 571.68 1,836

SDC also found alternate solutions to the Earth to Venus flyby to Mercury rendezvous problem.
Depending on the initial trajectory supplied to SDC, SDC converged to different trajectories. For
example, a double flyby of Venus, followed by the Mercury rendezvous was discovered. When
Mercury is given mass, then SDC converges to a flyby of Mercury before the rendezvous with
Mercury.

CONCLUSION

The accuracy of the SDC algorithm applied to low-thrust trajectory optimization was verified
by comparison to two programs based on parameter optimization and the calculus of variations.
The results of the three optimization programs SDC, SEPTOP, and CLSEP agree closely. SDC was
demonstrated to be an effective method for low-thrust trajectory design. Since SDC is based on
multi-body propagation, SDC can provide a high fidelity design tool. Both SEPTOP and CLSEP
are limited to low fidelity preliminary design optimization.

Future papers will present the abilities and characteristics of SDC which cannot be reproduced
with other methods of optimization.
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